STAT 123

UNIVERSITY EXAMINATIONS

SECOND SEMESTER 2023/2024 ACADEMIC YEAR

FIRST YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (STATISTICS)

STAT 123: INTRODUCTION TO COMPUTER INTERACTIVE STATISTICS

STREAM: R

TIME: 2 HRS

DAY: THURSDAY[8.30A.M-10.30A.M] DATE:18/04/2024

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES PLEASE DO NOT OPEN UNTIL THE INVIGILATOR SAYS SO

Laikipia University is ISO 9001:2015 and ISO/IEC 27001:2013 Certified

Instructions Answer question ONE and any other TWO questions

QUESTION ONE [30 MARKS]

Define briefly the following terms as used in statistics	[3 Marks]
i) Outlier	
ii) Descriptive statistics	
iii) Variable	
Give a diagrammatic representation that distinguishes between a population and sa	mple [2 Marks]
What does a model describe?	[1 Mark]
What steps does one normally goes through when writing a statistical report	[5 Marks]
Distinguish between nominal and ordinal scales of measurements. Cite an example	for each.
	[4 Marks]
State any three high level plots that are commonly constructed in R	[3 Marks]
Explain the rationale behind conducting destriptive statistics	[2 Marks]
Describe any two techniques that are commonly used to handle missing values.	[4 Marks]
Write down valuation results of the following R expressions	
i) <i>4:9-1:3</i>	[2 Marks]
ii) c(2,4,6,8)+c(3,6,9,12	[2 Marks]
iii) $rep(seq(2, 10, by = 2), 2)$	[2 Marks]
	Define briefly the following terms as used in statistics i) Outlier ii) Descriptive statistics iii) Variable Give a diagrammatic representation that distinguishes between a population and sa What does a model describe? What steps does one normally goes through when writing a statistical report Distinguish between nominal and ordinal scales of measurements. Cite an example State any three high level plots that are commonly constructed in R Explain the rationale behind conducting destriptive statistics Describe any two techniques that are commonly used to handle missing values. Write down valuation results of the following R expressions i) <i>4:9-1:3</i> ii) $c(2,4,6,8)+c(3,6,9,12)$ iii) $rep(seq(2, 10, by = 2), 2)$

QUESTION TWO [20 MARKS]

Suppose in an experiment, the measurements of lengths and diameters of five cylinders respectively are given as; (2.0, 1.2), (3.9, 0.7), (2.8, 0.8), (3.7, 1.5), (2.6, 0.7) Give and explain briefly R codes that you would use to;

a) Read these data into two vectors (give the vectors appropriate names)	[4 Marks]
b) Calculate;	
i) Mean and standard deviation of each variable	[4 Marks]
ii) Correlation between lengths and diameters	[3 Marks]
iii) Volume of each cylinder (Vol = Length * pi * (Diameter / 2) ²)	[5 Marks]
c) Display a table with the three variables in b) above	[4 Marks]

Laikipia University is ISO 9001:2015 and ISO/IEC 27001:2013 Certified

KEBS

QUESTION THREE [20 MARKS]

a) State any three examples of continuous variables.	[3 Marks]
b) Draw a normal distribution curve and state its properties.	[5 Marks]

- c) Assume a sample of students had a mean age of 35 years with a standard deviation of 5 years. A student was randomly picked from a group of 200 students. Find the probability that the age of the student turned out to be;
 - i) between 35 and 40 years[4 Marks]ii) beyond 45 years[4 Marks]
- d) Give and explain R code that can be used to generate twenty random variates whose mean and standard deviation are five and two respectively from normal probability distribution [4 Marks]

QUESTION FOUR [20 MARKS]

- a) State any two R packages that are used for high level plots [2 Marks]
- b) Describe how a box-plot is constructed. Give its diagrammatic representation. [6 Marks]

c) Suppose death rates for various age groups in sub-populations within counties of country J gave the output on the right in R after executing the code on the left.

 Vision : A University for Valued Transformation of Society
 Page 3 of 5

 Mission: To serve students and society through research, education, scholarship, training, innovation, outreach and consultancy

Laikipia University is ISO 9001:2015 and ISO/IEC 27001:2013 Certified

KEBS

d) Suppose in a study all women with at least one birth are classified as either cases or controls and with age at first birth as either \leq 30 years or >30 years and gave the following cross-tabulation in R.

	≤	30	years	>30	years
Case			683		2547
Control			1498		8747

Give and explain codes that would create the above table in R. [4 Marks]

QUESTION FIVE [20 MARKS]

a) What is meant by the term simple linear regression?

[3 Marks]

b) Discuss any four assumptions that your data must satisfy before regression analysis is performed

[8 Marks]

c) Suppose in a clinical study that was conducted to find whether there exists any relationship between the weight and blood pressure of patients gave the following output after analysis.

Call: $lm(formula = bp \sim wgt)$ Residuals: Min 10 Median 3Q Max -16.5142 -8.2463 -0.5857 4.7179 24.4143 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -41.5547 45.4858 -0.914 0.38764 2.4643 0.5693 4.328 wgt 0.00252 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 Residual standard error: 12.27 on 8 degrees of freedom Multiple R-squared: 0.7007, Adjusted R-squared: 0.6633 F-statistic: 18.73 on 1 and 8 DF, p-value: 0.002518 summary(bp_lm)\$r.squared [1] 0.7007488

Make appropriate interpretation

[10 Marks]

KEBS

Laikipia University is ISO 9001:2015 and ISO/IEC 27001:2013 Certified

Table A.3	Standardized	normal	distribution	function:	a table	e of
-----------	--------------	--------	--------------	-----------	---------	------

$F_U(u) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{u} e^{-x^2/2} dx,$

n	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0,5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5733
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6054	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0,4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7436	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0,8369	0,8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0,9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0,9545
1.7	0.9554	0.9564	0.9573	0.9432	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0,9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0,9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2,4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2,6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.8874	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2,9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.6	0.9998	0.9998	0.9999	0,9999	0,9999	0.9999	0.9999	0,9999	0.99999	0,9999

for	<u> </u>	0.0	to	3.69

Visio

Mission: To serve students and society through research, education, scholarship, training, innovation, outreach and consultancy

Laikipia University is ISO 9001:2015 and ISO/IEC 27001:2013 Certified

KEBS